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Abstract fl Equations were developed for the geometric analysis of 
scatter in isergonic profiles as a function of vertical (AAH), horizontal 
(AAS), and perpendicular (d )  distances from the error line. Sigma (a-) 
correlates with each of these quantities of the test series to produce sta- 
tistics (F and r )  identical to those for correlation with AG. The vertical 
distances, A N ,  are shown to be identical to the substituent effect, JAG; 
thus, it is concluded that the Hepler approach of implicating a solvation 
mechanism on the basis of p-a correlations for these distances is not 
warranted. The uncertainty of points on the isergonic profile for the test 
series was determined using the joint confidence region (‘‘error contour”) 
approach. Statistical limits of the contour lengths overlapped extremely 
between members of the test series. To eliminate such overlap for series 
showing small ranges in substituent effects, extremely precise rate data 
would be required with N (number of data points) = 4 or 5 for the Ar- 
rhenius fits. A compprison between d values and the perpendicular 
half-widths ( w / 2 )  of the error contours resulted in d > w / 2  for each 
member of the test series (excluding H), proving that scatter in the profile 
could not result from experimental error. A further comparison between 
differences in d ,  Ad, from suggested p lines for solvation and w / 2  values 
showed that a /3 range as large as 45’ could be included in the error con- 
tour widths of the test series. Since the average reaction temperature, 
T, fell within this range, solvation effects could not be distinguished 
statistically from error effects. 
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Attempts to demonstrate the usefulness of entropy- 
enthalpy (AH uersus AS) profiles in augmenting the 
mechanistic descriptions of chemical reactions have been 
well documented (1). Recent publications attempted to 
extend them to enzyme reactions (2) and protein-small 
molecule interactions in general (3). 

In many cases, AH uersus A S  profiles are linear; the 
slope of such profiles for either rate or equilibrium data 
yields Pi’, theisergonic2’temperature (1, Z), in accordance 
with: 

d A H  = &6AS (Eq. 1) 

where 6 = the Leffler-Grunwald operator for substituent 
or medium effects. The linearity of such profiles tends to 
confirm a common reaction mechanism for the members 
of a congeneric series, and the numerical value of p.  I i SPO- 
tentially associated with a known reaction mechanism. 
Thus, a value of = 280°K is customarily associated with 
an aqueous solvation mechanism for a series (4). 

Hepler (5) showed that Eq. 1 is one relationship ob- 
tained from an exact thermodynamic analysis of the 
Hammett equation (Eq. 2 )  when AH and AS are temper- 
ature independent: 

log (k , lkH)  = p a  0%. 2) 

where p = reaction constant, CT = substituent constant, and 

The slope = RPi when Arrhenius parameters E,  and In A are used for rate 

- The general term isergonic is used here to include both isokinetic and isoequ- 
da$ 

librium phenomena (Ref. 2). 

x and H refer to substituted and parent derivatives, re- 
spectively. As a result, congeneric series that obey Eq. 2 
should also obey Eq. 1. However, some reaction series 
follow the Hammett relationship but their AH uersus A S  
profiles are nonlinear or scattered (1). A rational expla- 
nation for the behavior of such series was discussed pre- 
viously in terms of multiple interaction mechanisms and 
related compensation phenomena (1,5). 

THEORETICAL 

Leffler-Grunwald Analysis of Scattered Isergonic Profiles- 
According to Leffler and Grunwald (I), the scatter in AH versus A S  
profiles may be explained in terms of multiple contributions to the ob- 
served enthalpies and entropies. For a model based on a two-interaction 
mechanism, the enthalpy and entropy expressions are given by: 

6AH = 6AH’ + bAH” (Eq. 3) 

6 A S  = 6AS’ + 6AS” (Eq. 4) 

where the superscripts, and ”, refer to two different but additive types 
of substituent contributions (e.g., resonance, inductive, steric, or solvation 
effects). These two contributions to the observed enthalpy and entropy 
would vary independently of one another for any given reaction series. 
Therefore, a plot of AH versus AS would not be expected to be linear. For 
the same reason, a plot of the Hammett equation (Eq. 2)  would not be 
expected to be linear under these conditions. 

On the other hand, when each of the two mechanisms is isergonically 
related (ie., 6AH’ = B‘dAS‘ and d A H ”  = p”6AS“): 

6 A H  = O’dAS’ + 8”dAS” 

dAS = 6AH’/Pf + 6 A H “ / p y  
(Eq. 5) 

(Eq. 6) 
dAG = [p’ - T]dAs’ + [p” - T]6AS” = 11 - (T/p’)]dAH’ + 

[I - (T/p”)]6AH” (Eq. 7 )  

From Eq. 7 it is apparent that for reactions run at T = @ or T = @”, the 
free energy expression will be simpler by one interaction mechanism. The 
same, however, is not true for the observed enthalpy and entropy ex- 
pressions (Eqs. 5 and 6), which renain complex independent of T when 

# p” or p’ >> p”. In practice, then, it is possible to obtain linear Ham- 
mett plots even when the AH uersus AS profile is scattered, provided that 
the reaction temperature is close to 8‘ or p”. 

Hepler Analysis of Scattered Isergonic Profiles-Hepler (4, 5) 
proposed a two-interaction modek, which simplifies Eqs. 3 and 4 and 
permits the linearization of a scattered AH uersus A S  plot. According 
to the Hepler scheme, the prime and double-prime superscripts of Eqs. 
3 and 4 refer to internal and external contributions of substituents, re- 
spectively. The internal contributions represent substituent interactions 
with the reaction center, and the environmental contributions represent 
substituent interactions with the solvent. By assuming an isergonic re- 
lationship for the environmental contributions and a negligible contri- 
bution from the internal entropy, Eq. 8 may be derived from Eqs. 3 and 
4: 

d A H  = 6AH’+ pndAS (Eq. 8 )  
where p” is the isergonic temperature for the solvation effect. The 6AH‘ 
quantity, corresponding to the internal enthalpy contribution, may now 
be calculated from Eq. 8 usizg the experimentally observed values of 6 A H  
and d A S  and letting p” = T, the average temperature for the determi- 
nations3 (5,6). The free energy expression for the Hepler scheme is given 
hy: 

6AG = 6AH‘ + (p” - T)dAS (Eq. 9) 

The reviewer of this manuscript appropriately commented that  the Hepler 
scheme with 270’ < B <  320” is specifically applicable to water and similar solv_ents. 
I n  other solvent systems. 8” for solvation may not necessarily approximate T 
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Figure I-Diagram showing the uertical (AAHi) and horizon@ ( AASi, 
distances of point (AHobsir AS,bsi) from the error h e ,  Yi = TXi + b. 

Since thermodynamic parameters for reactions are normally repoged 
for the average temperature of determination and since equals T or 
follows it closely, the second term in Eq. 9 will equal zero in most cases; 
the calculated values of &AH' will equal 6AG. It is not surprising, there- 
fore, that calculated 8AH' values are linear in u for series that obey the 
Hammett relationship (Eq. 2) (4,7,8).  

Vertical and Horizontal Distances from Error  Line-While the 
Hepler model is satisfying from a Fechanistic point of view, the method 
has two serious drawbacks. First, T for the solvation effect is also equal 
to the error slope for any isergonic relationship. Second, the calculation 
of 6AH' from Eq. 8 is identical to the method used in calculating 6AG 
values for scatter about any isergonic line. Therefore, it is possible to 
obtain results identical to those of Hepler's without referring to a solva- 
tion mechanism merely by calculating the deviation in enthalpy or en- 
tropy from the error slope, 7'. 

The equations for an analysis based on distances from the error line 
may be formulated byreference to Fig. 1. The equation of the error line 
with a slope equal to T and drawn through the coordinates of the parent 
point ( Y p ,  X,) is given by: 

Y,  = TXi + b (Eq. 10) 

where b = AHObSp - TAS,b, = free energy of parent compound, and Yi 
and X; represent AHOh and AS,,b5 values for a given compound projected 
to the error line. The vertical distance of the observed point in the figure 
from the error line is given by the difference in Affobsi and Y1 according 
to: 

A M ;  = U o h s ,  - TASobs, - b (Eq. 11) 
In a similar manner, the horizontal distance of the observed point from 
the error line is obtained as the difference between S,,bsi and Xp, which 
is equal to: 

AAS; = Asobs, - (Mobs , /T)  i- b/T (Eq. 12) 

The corresponding free energy terms for the observed values calculated 
from the distances to the error line are obtained by substituting Eqs. 11 
and 12 into the Gibbs free energy expression to obtain: 

AGohsz = AAffi + b (Eq. 13) 

- 

- 

and: 
- 

AGobs, = -TAAS, + b (Eq. 14) 

The values of AAHi of Eq. 11 and 6AH' of Eq. 8 differ only by the constant 
b, which is equal to the free energy contribution of the parent compound. 
Furthermore, from Eqs. 13 and 14, it can be seen that the expression for 
AGobs, is given as a sum of two free energy terms: one for the parent 
compound ( b )  and one for the substituent ( A m c  or -TAASi) .  The 
vertical distance, AAHi, or its counterpart on the horizontal axis, 
-TAAS,,  simply yields the free energy contribution of the substituent 
symbolized by 6AG. Thus, series that obey the Hammett relationship (Eq. 
2) will necessarily yield AAHi values that correlate with u. 

Lengths of Error  Contours and Perpendicular Distances from 
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Figure 2-Comparison of the joint confidence region (error contour) 
and confidence interual rectangle associated with the slope and inter- 
cept of the Arrhenius f i t  for the alkaline hydrolysis of phenyl benzo- 
ate. 

0 Line-The decision of whether to include any given member of a con- 
generic series within the classification of an assigned.@ value is arrived 
at by determining the error associated with that member on an isergonic 
profile. As stressed previously (1,6), however, the uncertainty of any point 
on such a profile is not given by a rectangle with dimensions in standard 
errors for that point but instead by a region referred to as the error con- 
tour. The standard errors of AH and A S  are appropriate when discussing 
either one of these two quantities independently of the other; but when 
both are considered jointly as in isergonic profiles, the correct uncertainty 
function is the joint confidence region (9). This region takes the shape 
of a highly eccentric ellipse when the variances of the two considered 
quantities differ widely and are strongly correlated. Such is the case for 
the least-squares estimates of the slope and intercept of Arrhenius plots 
from which AH and A S  are derived. 

Mandel and Linnig (10) pointed out that a negative correlation exists 
between the errors in slope and intercept whenever the x values of the 
original data are positive. As a consequence, the upper part of the error 
ellipse tilts toward the ordinate in a plot of slope oersus intercept4. The 
boundaries of this ellipse are determined by the standard error of esti- 
mate, s, for the least-squares analysis and by the ( F  ratio)1/2 for the de- 
sired confidence level. Thus, a t  any desired confidence level, only values 
of the slope and intercept that fall within the boundaries of the ellipse 
are allowed on the basis of observed experimental error. 

Mandel and Linnig (10) simplified the plotting of joint confidence 
regions by deriving a function that closely approximates the error ellipse 
from three sets of parallel tangents. These parallel lines can be plotted 
on graph paper with the aid of four constants (L,,,, L b ,  d,, and db) de- 
scribing the error function (see Appendix for equations). This method 
of ellipse construction was used to plot the joint error region associated 
with the slope and intercept of the Arrhenius fit for the alkaline hydrol- 
yses of phenyl benzoates a t  20,30, and 35' (8). Figure 2 illustrates the 
extreme eccentricity of the error ellipse for this type of data as compared 
with the larger rectangular area based in the standrd errors of the slope 
and intercept. 

Two imporhit features arise out of the error ellipse analysis as applied 
to the interpretation of isergonic profiles. First, the lengths of the error 
regions determine whether two or more points lying along an isergonic 
line are potentially interchanged as a result of experimental error. Second, 
the widths, w ,  or thicknesses of the error regions determine which points 
of an isergonic profile belong to a given interaction line with slope = 8. 
Both of these features can be utilized by plotting all individual error 
contours on an isergonic profile and then observing their distribution 
relative to either the least-squares line drawn through the data or the 
error line with a slope of T. 

Since the process of plotting error contours on graph paper is tedious 
and time consuming, even for the Mandel-Linnig projections, an alter- 
native method for providing the same information is desirable. A com- 
parison of the contour lengths projected along a given 13 line is easily ac- 
complished by computing the value of (slope f L,) for each point and 
then visually inspecting the calculated limits for overlap between any 

A plot of AH# uersus A S #  for these data would yield an error ellipse with a 
positive slope because of the change in sign that occurs in converting the slope to 
A H * .  
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Figure 3-Diagram showing the perpendicular distances d (distance 
from center of error ellipse to @line drawn through parent point) and 
w/2 (distance from center t o  ellipse boundary). 

points. These limits should not overlap if one wishes to gain statistical 
confidence in the relative positioning of points along the line. 

The use of contour widths to interpret isergonic data requires a com- 
parison between the perpendicular half-widths, wl2, of the contours and 
the respective perpendicular distances, d, from a given @ line (Fig. 3). 
These distances may be calculated from Eq. 15 which, in general, gives 
the perpendicular distance, p ,  of any point from a given line (11): 

p = (AX,  + BY, + C ) / ( A 2  + B 2 ) 1 / 2  (Eq. 15) 

where X ,  and Y, are the coordinates of the point and where the equation 
for the line is given by AX + BY + C = 0, with X and Y representing the 
coordinates for a point on the line. The coefficients A, B, and C may be 
expressed in terms of the more usual slope-intercept form for a line, Y 
= mX + b, as follows: A = -m, B = 1, and C = -b = -(Y - mX). For 
calculating the distance, d, in Fig. 3 from the line drawn through the 
parent point, these coefficients take on the values A = -0, B = 1, and C 
= -[slope, - @ (intercept,)]. For calculating the distance, w12, in the 
figure from the contour limit extending through a point with coordinates 
of (slope, + dm, and intercept,), the coefficients take on the values A = 
-L,,&, B = 1, and C = -((slope, + dm,) - Lm/Lh(intercept2)]s. A 
comparison between the values of d and w/2 for each point indicates 
whether the point belongs to the particular @ line in question. Thus, a 
point may be rejected at the confidence level of its error contour when 
d > w12. 

RESULTS AND DISCUSSION 

The data chosen for analysis are those of Washkuhn et al. (8) for the 
alkaline hydrolysis of 3- or 4-substituted phenyl benzoates (I), where X 
= 4-CH.i, H, 4-F, 4-C1, 3-CN, 4-CN, or 4-NO2. This congeneric series 
obeys the Hammett relationship (Eq. 2) but shows a scattered AH uersus 
A S  profile. Therefore, it is suitable for analysis using the equations given 
previously. The second-order rate constants, ko", for the series were 
reported as a function of temperature a t  20,25,30, and 35" determined 
in 5G?h (v/v) acetonitrile-0.02 M phosphate buffer. 

Activation Parameters-A preliminary graphical plot of the data 
showed a large systemic deviation of the rate constant a t  25" for each 
member of the series. These displaced data points were tested for ex- 
clusion from further data analysis by determining the significance 
probability of the t value under such conditions (12). In all cases, the 
significance levels were considerably greater than 0.05, justifying a re- 
jection of the null hypothesis. From these results and because of the large 
upward systemic displacement of each point, data at 25" were not in- 

Table I-Activation Parameters for the Alkaline Hydrolysis 
of Substituted Phenyl Benzoatesa 

Substituent A G # ,  A H # ,  AS#, cal/ 
(0-)b kcal/mole kcal/mole mole-deg 

4-CH (-0.17) 21.3 10.9 -34.8 
H (0.bO) 21.1 12.1 -29.7 

4-C1 (0.226) 20.6 11.8 -29.3 
3-CN (0.678) 19.9 10.3 -31.9 
4-CN (1.00) 19.6 10.5 -3 0.2 
4-N02 (1.27) 19.4 11.6 -25.8 

4-F (0.062) 20.7 11.0 -32.4 

QActivation parameters arc based upon an initial linear least-squares 
fit of raw data (at 20, 30,  and 35") from Ref. 8 to thCArrhenius equ_a- 
tion where AH# =_Ed - RT,  AS# = R [In kT - In (kT/h_) +,AH#/RT], 
A G d  = AH# - TASf (before rounding off), and T = ( Z T / / N =  
301.3"K. bValues of a; the Hammett constant for substituted phenols, 
were taken from Table 2-17 of Ref. 13. 

cluded in calculating the parameters given in Table I. The slopes and 
intercepts of the Arrhenius plots based on data at 20,30, and 35' were 
significant a t  least at the 0.05 level, except the intercept for the parent 
compound which was significant a t  the 0.10 level. 

Linear free energy and isergonic correlations for activation parameters 
of the phenyl benzoate series are given in Table 11. Of the three param- 
eters, only AG f is a linear function of u- (Eq. 16). Furthermore, Eq. 19 
shows that the isergonic profile is highly scattered. From the Leffler- 
Grunwald analysis given'previously, nonlinearity observed with Eqs. 
17-19 could be viewed in terms of multiple contributions to the observed 
enthalpies (Eqs. 3 and 4). When more than one mechanism contributes 
to AH, AS, or both, the separate contributions would not be expected to 
correlate with the same substituent parameter in either AH or AS,  nor 
would a proportionality of effects be expected to exist between the 
mechanisms. Hence, the isergonic profile would be scattered. 

Vertical and Horizontal Distances from @ Line-The vertical 
(AAH#)  and horizontal ( A A S f )  distances from the error slope (@ = 
301.3') for the individual points on the isergonic profile (Table 111) were 
calculated from the observed activation enthalpies and entropies before 
rounding off, using Eqs. 11 and 12, respectively. The vertical distance 
of each substituent from the error line is identical to its substituent effect, 
8AG #, in agreement with Eq. 13. Similarly, on thehorizontal scale, 6AGf 
may be obtained as the product of A M z  times -T, which is in agreement 
with Eq. 14. 

Linear free energy correlations for the vertical and horizontal distances 
are presented in Table IV. For 0 = 301.3", the resulting F ratios and 
correlation coefficients, r ,  are identical to those of Eq. 16 in Table 11, 
demonstrating the redundancy between AGf , Amf, and A A S f  as 
parameters for correlation with u-. Correlations based on AAHf and 
A A s  * simply do not add any new information to the previously deter- 
mined suhstituent effect based on AGt (Eq. 16). 

Table IV also gives correlations for A M #  uersus u- when p is varied 
using the values of AHf and A S  at 301.3'. The analysis demonstrates 
the effect upon F and r when @ equals some value other than the error 
slope, T. When varies between 0 and 600'K, the correlation coefficient 
takes on values between -0.215 and -0.910, with a maximum appearing 
at 0 = 325'. For 0 = O", the resulting AAHf values equal 6 A H f ;  the re- 
sulting F and r values for the correlation are identical to those for Eq. 17 
(Table 11) based on AHf. 

Values of @ between 280 and 325' closely approximate the limits of 0 

Table 11-Correlations for Activation Parameter@ 

Equa- 
tion 

Regression Equationsb Num- 
(n = 7)  S F r ber 

0 *. A G +  = -1.330 + 21.0 0.136 175  -0.986 1 6  
A H #  = - 0 . 2 6 8 ~  + 11.3 0.733 0 -0.215 1 7  
A s #  = 3.530 - 32.1 2.27 4 -0.684 18 

2 -0.554 1 9  AH+ = 1 3 4 A S #  + 15,300 625.0 
I 

5 From the Appendix, L,/Lb = (N/SX')1'2 = [N/Y(llT)']1'2 while r= ( Z T ) / N .  
The difference between these two quantities, however, IS small (-0.3"K) for the 
usual 20" temperature range used in collecting Arrhenius data. 

Q n = number of data points used in linear least-squares fit; S = stand- 
ard error of estiniate; r = correlation coefficient; and F = F ratio (at the 
90 arid 95% confidence levels, F = 4.06 and 6.61, respectively, for 1,5 
degrees of freedom). bEquations 16 and 17 are expressed in kcal/rnole, 
Eq. 18 is expressed i n  cal/mole-deg, and Eq. 19 is expressed in calimole. 
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Table III-Comparison between Substituent Effects ( 6  AG+) 
and Vertical (A&#) and Horizontal (A&#) Distances from 
the Error Slope, p = 301.3~ 

6 A G # ,  AAH+,  A AS', 
Substituent cal/mole cal/mole cal/ mo le-deg 

4-CH3 2 69 269 -0.894 

4- A -3 24 -324 1.074 
H none) 0 0 0 

4-C1 
3-CN 
4-CN 
4-NO, 

-4 83 -483 1.602 
-1143 -1 143 3.792 
-14 50 -1450 4.813 
-1669 -1669 5.538 

a 6 A C  = AGx# ~ AGH';AAH' and AAS+ were calculated using Eqs. 
11 and 12, respectively. 

for aqueous solvation effects in phenols as suggested by Hepler (270" < 
/3 < 320') (4). Within this range of 8, the value of r for the A M f  uersus 
u- correlations isobserved to change only very slightly, and deviations 
in the slopes from Tare not statistically significant even at the 50% level. 
Alternatively, it may be stated that values of /3 between 280 and 325OK 
for a proposed solvation mechanism could not be distinguished statisti- 
cally from T falling within this temperature region. 

Lengths of Error Contours-The constants L,, Lb, d,, and db were 
calculated for each member of the series, using the method of Mandel 
and Linnig (10) outlined in the Appendix. Based upon the values of L, 
and the slope values for Arrhenius fits to the data, limits for lengths of 
error contours are given in Table V for the 90% confidence level. A visual 
inspection of these limits shows that each member of the series is over- 
lapped to some extent by every other member of the series. If the indi- 
vidual data points for the present series fell upon a single isergonic line, 
0 = T, the result could only be attributed to experimental error. 

The extreme overlap of error contours for this series is a function oE 
( a )  the small number of data points, N ,  available for the Arrhenius fits; 
( b )  the experimental error as reflected by S2 (error variance); and ( c )  the 
narrow range of slope values (0.9 kcal/mole), which produces small dif- 
ferences between the individual members. The first two factors are in- 
cluded in the constant, K (Eq. A5), which determines the length of the 
error contour. If S2 is maintained at  the same level, simply increasing N 
for the Arrhenius fits would considerably reduce the lengths of the 
contours. Thus, lengths would be decreased by a factor of [(Fdf = l ) / (Fdf  
= x)]*f '  for each additional increase in N above N = 3. For N = 4 and N 
= 5, the contour lengths decrease by factors of 2.35 and 3.01, respectively, 
at the 90% confidence level. For the present series, however, these de- 
creases in contour lengths are not sufficient to eliminate their overlap 
because of the small differences between the slopes. Extremely precise 
data yielding very small values of S2 would be required to remove the 
overlap. 

Perpendicular Distances from B Line-As discussed under Theo- 
retical, perpendicular distances represented by d and w/2 may be utilized 
to determine whether the individual members of a series belong to a given 
B line. These values for the present series are given in Table VI for vari- 

Table IV-Correlations for Distances from the @Line 

P Slope Intercept F 

Vertical Distancesa ( A A H #  uersus 0 9  
0 -268 -839 0 

280 -1260 -1 53 118 
301.3 -1330 -1 02 175 
325 -1420 -43.6 21 1 
600 -2390 630.0 24 

Horizontal Distancesa (AAS' uersus u-) 

-0.215 
-0.979 
-0.986 
-0.988 
-0.910 

301.3 4 .42  0.337 175 0.986 
Perpendicular Distances ( d  versus U-) 

0 135 4 22 0 -0.215 
280 2.26 0.276 118 0.979 
301.3 2.23 0.170 17 5 0.986 
325 2.19 0.0674 211 0.988 
600 2.00 0.528 24 0.9 10 

QThe intercepts for vertical and horizontal distances are expressed in 
calories per mole and calories per mole-degree, respectively. 

Table V-Limits for Lengths of Error Contours at 90% 
Confidence LevelQ 

~ 

Slope + L 
Substituent kca l /moc ' kcal /mole 

Slope - L,,, , 

4-CH3 

4 -F 
4 -C1 
3 -CN 
4-CN 
4-N02 

H (none) 
-4.64 
-1.26 
-3.22 
-2.35 
-3.23 
-2.57 
-4.55 

-6.89 

-8.4 4 

-7.74 
-8.60 
-7.76 

-1 1.6 

-10.1 

Q Slope = - ( E Q / R ) ,  obtained from a linear least-squares fit of  the data 
(at 20, 30, and 35") to  the Arrhenius equation. The L,  values were cd-  
culated from Eq. A1 (see Append ix ) .  The F ratio = 49.5 for 2 , l  degrees 
of freedom at the 0.90 level. 

ations in /3 and in significance levels. The perpendicular distances for the 
members of the series from the error line (d301.3) is greater than their 
respective contour widths (w/2) measured perpendicularly to the contour 
boundary (Table VI). This comparison is good at both the 90 and 95% 
confidence levels. A similar comparison between d values measured from 
/3 = 280" and 325' and their respective w/2 values produces the same 
results. 

From the comparisons based on a p line of 301.3', it is certain that the 
points do not fall along the error line or that the distribution of points 
on the isergonic profile is strongly affected by the correlation of error 
producing this line. The influence of a heavily weighted error slope would 
force the distribution of points along a slope of /3 = T. This is not the case 
here since, from the previous A H f  Versus A S f  correlation (Eq. 19), B 
= 134" and r = -0.554. Pure error would produce a perfect correlation 
between AH# and A S f ,  with the resultant slope being equal to T'. 

The Ad values given in Table VI provide a means of determining 
whether 0 = 301.3' is different from either B = 280' or /3 = 325', the latter 
being close to the suggested limits for solvation effects in phenols (4). A 
comparison of either A1 or A2 (differences in d from either side of the error 
line) with the respective w/2 values for the 95% confidence level shows 
that the differences, Ad, fall within the error range of the perpendicular 
contour widths, w/2. The comparisons are approximately as good at  the 
9090 confidence level. These results indicate that = 301.3" cannot be 
distinguished from /3 = 280 or 325'. 

The d values for each substituent a t  a given value of /3 follow a trend 
resembling its substituent effect (Table VI). Correlations between d and 
u- for values of 0 ranging between 0 and 600" are given in Table IV. The 
values of F and r obtained over the range of 6 for these correlations are 
identical to those values obtained for the correlation between A A H #  and 
u- (Table IV). While a comparison between values of d and w/2 aids in 
the classification of values, the absolute values of d identically parallel 
substituent effects (6AG #)  and, therefore, provide no new information 
about substituent effects for the series. 

CONCLUSIONS 

The present analysis shows that the geometric distances of data points 
on an isergic profile, calculated either in the vertical ( A M ) ,  horizontal 
(AAS) ,  or perpendicular ( d )  distances from the error slope, do not add 
any new information to a substituent effect analysis already based on AG. 
The vertical distances, AAH, are identical to the substituent effect 6AG; 
for series that obey the Hammett relationship (Eq. 2), these distances 
must correlate with u- regardless of the implication of a solvation 
mechanism. Thus, the use of the Hepler method (Eq. 8) to demonstrate 
a solvation effect in the scattered isergonic profile for series I would not 
be warranted. This conclusion does not deny the existence of a solvation 
mechanism for the series but does seriously question the Hepler approach 
for implicating the mechanism. 

Statistically, the use of the joint confidence region (error contour) is 
the soundest way of analyzing the distribution of points on an isergonic 
profile. The method is simple and should routinely accompany such 
profiles appearing in the literature. The limits of the error contour lengths 
provide evidence of overlap between members of the series and, hence, 
dictate statistical uncertainty along the line. For series such as I, which 
do not show a wide variation in substituent effects, extremely precise rate 
data with N = 4 or 5 would be required to eliminate overlap between 
contours. 

Leffler (6) suggested testing the randomness of the data along the 
isergonic line when overlap cannot be eliminated. Thus, points appearing 
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Table VI-Comparison between d and w/2  Valuesa 

d Values A db wl2 Valuesc 

Substituent p = 280 p = 301.3 p = 325 A’  A =  CL = 0.90 CL = 0.95 

4-CH3 -0.290 -0.450 -0.604 0.154 0.160 0.078 0.157 
H (nnnP\ 0 0 0 0 0 0.357 0.71 7 
i:F--- --- ’ 
4-C1 
3-CN 

0.685 
0.852 
2.140 

0.540 
0.806 
1.908 

. - .  
0.402 0.138 0.145 0.181 0.363 
0.763 0.043 0.046 0.269 0.540 
1.686 0.222 0.232 0.156 0.314 

4-CN 2.628 2.421 2.224 0.197 0.207 0.209 0.419 
4-NO, 2.849 2.787 2.727 0.060 0.062 0.111 0.223 

= T h e  d and w / 2  values were calculated using Eq. 15 and the values of the coefficients A ,  B, and C described in the text. b A’ and A2 refer to the dif- 
ferences (d,,,., - d,,,) and (d,,, - d301.3), respectively. CCL = confidence level. 

along the line in an order that also follows their u values could still rep- 
resent a real effect. A comparison between the d and w/2 values provides 
a means of determining whether the points falling along an isergonic line 
differ statistically from those falling along another line such as the error 
line. For series such as I with scattered isergonic profiles, a result of d > 
w/2 simply proves that the scatter is not the result of experimental 
error. 

A further comparison between differences in d ,  Ad, from various B lines 
and w/2 values provides a means of establishing a 0 range for the error 
contour. When using suggested B lines for solvation effects, this range 
for series I was approximately 45”. Since the average reaction tempera- 
ture, F, fell within this range, it must be concluded that solvation effects 
could not be distinguished statistically from error effects. 

APPENDIX 
Equations Al-A4 give the relationships for computing the four con- 

stants (L,, I!+, d,, and d b )  required in constructing the joint confidence 
region from three sets of parallel tangents (10): 

L,  = K(N/A)1/2 (Eq. A1) 

L b  = K(Q/A)’/’ (Es. A2) 
d ,  = K[BW/Q(l + W)11/2 (Es. A3) 

d b  = d m  ( L b I L m )  (Eq. -44) 
Definitions of the symbols appearing in these equations are further given 
by Eqs. A5-A8: 

K = (2FS2)1/2 (Eq. A5) 

A = N x X 2  - ( E X ) ‘  (Eq. A61 

Q =  E X 2  (Es. A7) 

w = (NCX2)1’2/EX (Eq. A8) 
where F = F ratio for 2 and N - 2 degrees of freedom at the desired 
confidence level, S2 = the error variance for the least-squares analysis, 

N = total number of data pairs, and X = X value for data pair. 
The joint confidence region is constructed within a rectangle having 

the dimensions of 2L, for the ordinate and 2Lb for the abscissa, as ob- 
served in Fig. 2. A diagonal line with a negative slope running from corner 
to corner through the rectangle forms the major axis of the simulated 
ellipse, thus producing a tilt slope of L,/Lb. Plotted values i d ,  in the 
ordinate direction and f d b  in the abscissa direction from the center of 
the rectangle form the guide points for drawing the two sloping major 
ellipse boundaries (Fig. 2). 
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